Chemical Constituents From the Aerial Roots of Ficus benghalensis L.,  Leaves of Nyctanthes  arbor-tristis  L. and Roots of Verbesina encelioides  (Cav.) Benth. et Hook. f.

Shahnaz Sultana1,2, Mohammed Ali1*, Showkat Rassol Mir1

1Phytochemistry Research Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110 062, India 

2Present address: College of Pharmacy, Jazan University, Jazan- 45142, Saudi  Arabia  

Received: 26-Nov-2018 , Accepted: 23-Nov-2018

Keywords:  Ficus benghalensis aerial roots, Nyctanthes arbor-tristis leaves, Verbesina encelioides roots, Phytoconstituents, Isolation

Full-Text PDF      

Google Scholar  

How To Cite       

Abstract

Ficus benghalensis L. (Moraceae) is anative to tropical Asia. Its aerial roots are styptic and taken to alleviate biliousness, dysentery, liver inflammation, jaundice, spermatorrhoea, syphilis and obstinate vomiting.   Nyctanthes arbor-tristis  L. (Oleaceae)  is distributed in the  eastern  Asia including  India, Nepal, Pakistan, Thailand and  Indonesia. Its  leaves are  used to treat  acidity,  asthma,  bronchitis, cough,  dyspepsia,  fevers, hypertension,  malaria, menstrual cramps, piles,  rheumatism,  sciatica, snake bites, strangury and to  expel intestinal worms. Verbesina encelioides (Cav.) Benth. et Hook. f. (Asteraceae) is a native to southeastern North America and one of the most common weeds in northern India after the rainy season. Its roots are used to cure bladder inflammation and also as a blood purifier.  The air-dried plant parts were exhaustively extracted with methanol individually in a Soxhlet apparatus. The concentrated methanol extracts were adsorbed on silica gel for column and chromatographed over silica gel column separately. The columns were eluted with petroleum ether, chloroform and methanol successively to isolate the phytoconstituents. Phytochemical investigation of the aerial roots of F.  benghalensis afforded  n-tritriacontan-10-one (1),  30-lauryloxy- urs-12-en-3β-olyl butyrate (30-lauryloxy-α-amyrin 3-butyrate, 2) and  urs-12-en-23,6α-olide 3β-olyl palmitate (3-palmityl α-amyrin-23,6α-olide, 3). The leaves of N.  arbor-tristis  furnished two vanillyl glycosidic disters characterized as oleiyl-O-α-D-xylopyranosyl-(2a→1b)-O-α-D-xylopyranosyl-2b-vanillyl-4b-caproate (oleiyl-O-α-D-dixylosyl vanillyl caproate, 4) and oleiyl-O-α-D-arabinopyranosyl-(2a→1b)-O-α-D-arabinopyranosyl--(2b→1c)-O-α-D-arabinopyranosyl--(2c→1d)-O-α-D-arabinopyranosyl-2d-vanillyl-4d-caproate (oleiyl-O- α-D-tetra-arabinosyl vanillyl  caproate, 5). The roots of V.  encelioides produced  tetracosan-1-oyl   1-tetradecanoate (lignoceryl   myristate,  6), β-amyrin palmitate  (7), urs-12-en-3β-olyl oleate (β-amyrin oleate,  8) and  β-amyrin stearate (9). The structures of these phytoconstituents have been established on the basis of spectral data analysis and chemical reactions. 

1 Introduction

Ficus benghalensis L., syn.F. banyana  Oken, F. indica  L., F.  proceraSalisb., Urostigma    benghalense  (L.) Gasp. (Moraceae), known as bargad, bar and Indian banyan, is anative to tropical Asia from India through Myanmar, Thailand, southern China and Malaysia. It is a large, fast growing, evergreen to deciduous   tree up to 30 m tall, with spreading   branches and many aerial roots;  leaves stalked, ovate-cordate, 3-nerved, entire; petiole with a broad smooth greasy gland at the apex, compressed, downy; female flowers  sessile,  small; gall flowers numerous, pedicellate;  fruits in axillary pairs,  of a cherry size, pinkish-red,  round and downy1.  The leaves are used as an aphrodisiac, astringent,   diaphoretic and to treat abdominal pain, abscesses, biliousness, cuts, dysentery,  diarrhoea, fever, inflammation,  ulcer, vaginal complaints and  vomiting.  The plant  latex is aphrodisiac,  maturant, tonic and  vulernary; useful to relieve  bruises,  dysentery in children, fever,  gonorrhea,  inflammations,  lumbago, mumps,  nose-diseases, piles, rheumatism,  ringworm, cracked  soles, spermatorrhoea, toothache and wounds. The fruits are regarded as an aphrodisiac, refrigerant and tonic.  The aerial roots are styptic and taken to alleviate biliousness, dysentery, inflammation of liver, jaundice, spermatorrhoea, syphilis and obstinate vomiting. The bark is antidiabetic, astringent, diuretic and tonic;   effective to cure leucorrhoea. The fruit is ingested as a refrigerant and tonic. The stem bark with the fruits of Embelia ribes is given to prevent pregnancy. An infusion of the twigs is drunk as a remedy for haemoptysis2-4. A stem decoction is drunk to cure dysentery5.

The leaves of F. benghalensis contained quercetin-3-galactoside, rutin, catechin ,  genistein,   friedelin, taraxoseterol, lupeol, β-amyrin,  psoralen, bergapten, proteins  and β-sitosterol 3,4,6. The bark yielded  5,7-dimethyl ether of anthocyanidins, perlagonidin,  long chain aliphatic ketones,  β-sitosterol- α-D-glucose, phytosterols,  meso-inositol, linolyl and oleiyl glucosides, keto-n-cosanyl stearate, hydroxypentacosanyl palmitate and phenyl tetradecanyl oleiate7-9. Taraxasterol tiglate was isolated from the heart wood 3,4.  The seeds afforded lectins10. The seed oil was consisted of palmitic, oleic, linoleic, linolenic, vernolic, stearic, malvalic, sterculic, lauric and myristic acids11. The aerial roots possessed flavonoids, bengalensinone, benganoic acid, lupanyl acetate, 3-acetoxy-9(11),12-ursandiene, stigmasterol, 4-hydroxyacetophenone, 4-hydroxybenzoic acid, 4-hydroxymellein  and p-coumeric acid12,13.   The   leaf essential oil was composed mainly of α-cadinol, germacrene-D-4-ol, γ-cadinene  and α-muurolene14

Nyctanthes arbor-tristis  L., syn. N.  dentata  Blume, N. tristis Salisb., Bruschia macrocarpa Bertol., Scabrita triflora L. (Oleaceae),  known as parijat, har singar, night-flowering jasmine and   queen of the night,  is distributed in the  eastern  Asia including  India, Nepal, Pakistan, Thailand and  Indonesia. It is a shrub or a small tree up to  10 m tall, with flaky grey bark;  leaves are opposite, simple, with an entire margin; flowers  fragrant, corolla  white with an orange-red centre, in clusters of two to seven; fruits  brown, cordate capsule  with two sections each containing a single seed15.  The leaves are  bitter tonic, cholagogue, diaphoretic,  diuretic,  febrifuge, anti-inflammatory, antispasmodic, hypotensive, laxative  and  respiratory stimulant;   used to treat congestion caused by asthma, dry cough,   bronchitis, acidity, dyspepsia,  fevers, hypertension,  malaria, menstrual cramps, piles,  rheumatism,  sciatica, snake bites  and strangury. A   leaf extract is given to children to expel roundworms and threadworms15,16. The flowers are emmenagogue and consumed to provoke menstruation. The flower essential oil is effective to relieve dandruff, irritation, swellings associated with arthritis, stress, muscle tension, rheumatism, sore muscles, headaches, injuries, lice infection, menstrual pains, pimples, rashes, sciatica, vertigo   and wounds2,15  .

The leaves of N.  arbor-tristis   contained  β-sitosterol, hentriacontane,  astragalin,  nicotiflorin,  nyctanthine,  nyctanthic acid,  ß-amyrin, friedelin,  lupeol, oleanolic,   tannic, ascorbic and fatty acids,  methyl salicylate,   resin, volatile oil,  carotene,  D-mannitol,  glucose, fructose, iridoids,  benzoic acid and  arborsides A – D15, 17-19. The leaf epicuticular wax was consisted of higher aliphatic hydrocarbons20.  The flowers yieded  nyctanthin, D-mannitol, tannins, glucose, carotenoids, α-crocetin glycosides,   rengyolone, 6-O -trans-cinnamoyl-7 O-acetyl-6-β-hydroxyloganin and  iridoid  glucosides21. The flower oil was composed of α-pinene, p-cymene, 1-hexanol, methyl heptanone, phenyl acetaldehyde, 1-decenol, phytol, 2-methyl octadecane, nonadecane, methyl myristate, cis-9-tricosene, geranyl geraniol and anisaldehyde15,19, 22-24.  The seeds possessed lipids, nyctanthic acid, 3,4-secotriterpene acid, a polysaccharide,  β-sitosterol, arbortristosides  A, B, D and E and 6-β- hydroxyloganin25. The stems furnished naringenin -4′-0-β-glucapyranosyl-α-xylopyranoside and β-sitosterol26.

Verbesina encelioides (Cav.) Benth. et Hook. f., syn. V.  australis Baker,  V.   scabra  Benth.,  Ximenesia  encelioides Cav. (Asteraceae),  known as golden crownbeard,  gold weed, wild sunflower,  cowpen daisy, butter daisy, American dogweed  and South African daisy, is a native to southeastern North America and parts of Central and South America. It is naturalized in the Middle East, Spain, Argentina, India,  Australia, the Pacific islands and other warm regions of the world27. It is one of the most common weeds in northern India, germinating after the rainy season and invading crop fields28. It  is an annual herb, up to 150 cm high; with short-hairy stem, alternate,  lanceolate to triangular-ovate leaves, bases broadly cuneate to truncate, dull green, 3-veined, with dentate margin, and strigose-canescent hairs;  inflorescence has 1-many heads,  ray flowers orange-yellow,  disk flowers yellow to light brown; achenes grayish  brown,  obovate, flattened, with wide wing29,30. The plant is used to treat cancer, fevers, gastro-intestinal disturbance, itch, gum sores, piles, skin problems, snake and spider bites and warts.  The roots are used for retention of water, bladder inflammation and also as a blood purifier. Leaf juice is taken as a laxative, a leaf paste is applied to cure rheumatism. It is a toxic plant for livestock31,32 .

V. encelioides plant contained  ceryl alcohol, galegine, β-sitosterol, stigmasterol, their 3-β-D-glucosides, β-sitosterol galactoside,  hentriacontol,  α- and β-amyrins,  benzyl-2, 6-dimethoxy benzoate, bornyl  ferulate, p-coumaric, linoleic  and linolenic acids, phytol, taraxasterol acetate,  pseudotaraxasterol,  its acetate, pseudotaraxastenone, 16β-hydroxy-pseudotaraxasterol-3β-palmitate and quercetin-3-O-β-D - galactopyranoside33-36. The flowers yielded quercetin 3-galactoside, quercetin-3-galactoside-7-glucoside and quercetin-3-xyloside-7-glucoside37,38. The flower essential oil was composed of pseudolimonene, γ-cadinene, 9-epicaryophyllene, γ-eudesmol, δ-3-carene, and viridiflorol; the leaf essential oil was consisted of γ-caryophyllene, γ-muurolene, germacrene–D,  γ- cadinene , δ-elemene and borneol  as the major constituents39. Keeping in view the high reputation and wide application of herbal drugs F.  benghalensisN.  arbor-tristis and  V.  encelioides in many indigenous medicinal systems, it has been aimed to describe establishment of structures of the phytoconstituents isolated from these plants.

2   Materials and Methods 

2.1. General procedures

Melting points were determined on a Perfit melting point apparatus and are uncorrected.  UV spectra were measured on Shimadzu-120 double beam spectrophotometer with methanol as a solvent. IR spectra were recorded in KBr pellet on a Shimadzu FTIR-8400 spectrophotometer. The 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were scanned on a Bruker DRX instruments using TMS as an internal standard and coupling constants (J values) are expressed in Hertz (Hz). Mass spectra were recorded by affecting electron impact ionization at 70 eV on a Jeol SX-102 mass spectrometer equipped with direct inlet prob system. The m/z values of the more intense peaks are mentioned and the figures in bracket attached to each m/z values indicated relative intensities with respect to the base peak. Column chromatography was performed on silica gel (60-120 mesh; Qualigen, Mumbai, India). TLC was run on silica gel G 60 F254 precoated TLC plates (Merck, Mumbai, India). Spots were visualized   by exposing to iodine vapors and UV radiations (254 and 366 nm) and spraying with ceric sulphate solution.

2.2. Plant materials

The aerial roots of Ficus benghalensis were procured from a tree located in Ghaziabad (U.P.), India. The leaves of Nyctanthes arbor-tristis were purchased from a local market of  Khari Baoli,  Delhi.  The roots of Verbesina encelioides  were collected from the Inderprasth  Park, Delhi. The plant materials were authenticated by Prof. M. P. Sharma, Taxonomist, Department of Botany, Jamia Hamdard, New Delhi. The voucher specimens of these plant parts are preserved in the herbarium of the Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi.

2.3. Extraction and isolation

The plant parts (1 kg each) were coarsely powdered and extracted exhaustively with methanol individually in a Soxhlet apparatus. The extracts were concentrated under reduced pressure to get dark brown masses, 121.4 g, 142.9 g and 112.5 g, respectively. The dried residue (100 g each) was dissolved in a minimum amount of methanol and adsorbed on silica gel column grade (60-120 mesh) individually to obtain a slurry. Each slurry was air-dried and chromatographed over silica gel columns loaded in petroleum ether (b. p. 60 - 80°C) separately. The columns were eluted with petroleum ether, petroleum ether - chloroform (9:1, 3:1, 1:1, 1:3, v/v), chloroform and chloroform - methanol (99:1, 49:1, 19:5, 9:1, 17:3, 4:1 7:3, 1:1, v/v) mixtures. Various fractions were collected singly and matched by TLC to check homogeneity. Similar fractions having the same Rf values were combined and crystallized with solvents. The isolated compounds were recrystallized to get the following pure compounds:

2.4 Isolation of phytoconstituents from the aerial roots of Ficus benghalensis

2.4.1 n-Tritriacontan-10-one (1)

Elution of the column with petroleum ether  furnished colorless powder of  1,  208  mg, recrystallized from chloroform-methanol (1:1), m. p. 109 - 110  °C, UV λmax (MeOH): 213 nm;  IR γmax (KBr): 2921, 2854, 1710,  1635,  1462, 1377, 1260, 1196, 1096,  804, 726 cm-1; 1H NMR (CDCl3): δ 2.53 (2H, m, H2-9), 2.15 (2 H, m, H2-11), 1.72 (2 H, m, CH2), 1.63 (2 H, m, CH2), 1.33 (2 H, m, CH2), 1.27  (6 H, br s, 3 x CH2), 1.25 (44 H, br s, 22 x CH2), 0.87 (3 H, t, J = 6.1 Hz, Me-1), 0.83 (3 H, t, J = 6.3 Hz, Me-33);   13C NMR (CDCl3): δ 193.65 (C-10), 31.19 (CH2-11), 30.31 (CH2-8), 29.94 (25 x CH2), 28.62  (CH2), 26.32 (CH2),   22.67 (CH2), 19.16 (Me-1), 13.55  (Me-33); ESI MS m/z (rel. int.): 478 [M]+ (C33H66O) (26.3), 351 (2.3),  323 (29.6),  155 (5.7),  127 (4.6).

2.4.2 30-Lauryloxy-α-amyrin 3-butyrate  (2)

Elution of the column with chloroform gave colourless crystals of 2, recrystallized from acetone, 167 mg,  m. p.  129 - 130 °C; UV lmax (MeOH): 215 nm (log ε 4.9);  IR γmax (KBr):    2921, 2853, 1732, 1641, 1463, 1375, 1247, 1182,  1028, 757  cm-11H NMR (CDCl3): δ 5.34 (1H, d, J = 5.1 Hz,  H-12), 4.15 (2H, d, J = 7.2 Hz,  H2-30),  4.06 (1H, dd, J = 4.7, 7.5 Hz, H-3β), 2.33 (2H, t, J = 5.7 Hz, H2-2′), 2.29 (2H, t, J = 4.6  Hz,  H2-2′′), 2.23 - 1.20 (43H, m, 5 CH,  19 x CH2), 1.07 (3H, brs, Me-23),  0.98 (3H, brs, Me-25),  0.95 (3H, brs, Me-27), 0.93 (3H, d, J = 6.2 Hz,  Me-29), 0.90 (3H, brs, Me-24),  0.88 (3H, brs, Me-28), 0.86 (3H, brs, Me-26), 0.83 (3H, t, J = 6.1 Hz,  Me-4′), 0.79 (3H, d, J = 6.2 Hz,  Me-12′′); 13C NMR (CDCl3): δ 38.27 (C-1), 27.29 (C-2), 81.04 (C-3), 38.81 (C-4),  55.24 (C-5), 18.31 (C-6), 33.26 (C-7), 39.12 (C-8), 47.36 (C-9), 38.16 (C-10),  23.24 (C-11),   124.40 (C-12), 139.86 (C-13), 52.76 (C-14), 27.91 (C-15), 23.49 (C-16), 36.78 (C-17), 42.13 (C-18), 42.85 (C-19), 30.71 (C-20),  29.57 (C-21),  36.94 (C-22), 28.36 (C-23), 15.98 (C-24), 15.51 (C-25), 17.21 (C-26), 17.16 (C-27), 27.32 (C-28), 24.27 (C-29), 64.31 (C-30), 174.03 (C-1ʹ), 55.92  (C-2ʹ), 31.44 (C-3′), 14.26 (C-4ʹ), 171.12 (C-1ʹʹ),  40.09  (C-2ʹʹ), 32.15 (C-3ʹʹ), 30.18 (C-4ʹʹ), 29.69 (C-5ʹʹ),  29.46 (C-6′′), 29.18 (C-7′′, C-8′′ ), 28.59 (C-9′′), 25.11 (C-10′′), 22.68 (C-11′′),  14.21 (C-12ʹʹ);  ESI MSm/z(rel.int.): 694 [M]+ (C46H78O4) (25.6), 623 (5.3), 511 (9.2),  416 (12.8),  278 (11.3), 207 (21.7), 199 (23.4), 191 (8.1),  183 (34.8).

2.4.3 3-Palmityl α-amyrin-23,6α-olide (3) 

Further elution of the column with chloroform gave colourless crystals  of  3, recrystallized from acetone, 216  mg,  m. p.  191 - 193 °C; UV lmax (MeOH): 221 nm (log ε 5.1);  IR γmax (KBr):  2925, 2855, 1736, 1640, 1459, 1372, 1245, 1162,  1029, 758  cm-11H NMR (CDCl3): δ 5.12 (1H, t, J = 3.6 Hz,  H-12), 4.51 (1H, ddd, J = 4.6, 4.8, 5.7  Hz,  H-6β),  4.13 (1H, dd, J = 5.6, 8.3 Hz, H-3β), 2.30 (2H, t, J = 7.6 Hz, H2-2′), 2.26 (2H, d, J = 7.6   Hz,  H2-11), 2.23 - 1.31 (19H, m, 5 x CH,  7 x CH2), 1.29 (8H, brs, 4 x CH2), 1.27 (8H, brs, CH2), 1.25 (4H, brs, 2 x CH2), 1.23  (4H, brs, 2 x CH2), 1.13 (3H, brs, Me-25),  1.06 (3H, brs, Me-24),  1.01 (3H, brs, Me-26), 0.97 (3H, brs, Me-28), 0.91 (3H, brs, Me-27),  0.87 (3H, d, J = 6.1 Hz,  Me-29), 0.84 (3H, J = 6.0 Hz, Me-30),  0.79 (3H, t, J = 6.6 Hz,  Me-16′);  13C NMR (CDCl3): δ 38.87 (C-1), 25.90 (C-2), 80.07 (C-3), 37.80 (C-4),  54.60 (C-5), 80.05 (C-6), 33.09 (C-7), 40.84 (C-8), 46.95 (C-9), 36.12 (C-10),  22.95 (C-11),   123.66 (C-12), 138.88 (C-13), 41.38 (C-14), 28.39 (C-15), 27.50 (C-16), 38.94 (C-17), 59.55 (C-18), 39.08 (C-19), 37.02 (C-20),  30.57 (C-21),  36.92 (C-22), 169.96 (C-23), 15.12 (C-24), 16.24 (C-25), 16.94 (C-26), 22.70 (C-27), 20.86 (C-28), 20.69 (C-29), 20.43 (C-30), 170.11 (C-1ʹ), 59.34  (C-2ʹ), 32.44 (C-3′), 30.57 (C-4ʹ), 29.56 (C-5ʹ),  29.41  (C-6ʹ), 29.27 (C-7ʹ), 30.18 (C-8ʹ), 29.69 (C-9ʹ),  29.46 (C-10′), 29.18 (C-11′),  28.56  (C-12′), 25.43 (C-13′), 24.28 (C-14′), 22.64 (C-15′),  13.64 (C-16ʹ); ESI MSm/z(rel.int.): 692 [M]+ (C46H76O4) (5.4), 473 (20.1), 453 (11.4), 436 (23.7), 256 (12.8), 239 (7.5), 234 (14.2), 218 (6.2).  

2.5 Isolation of phytoconstituents from the leaves of Nyctanthes   arbor tristis 

2.5.1 Oleiyl-O- α-D-dixylosyl vanillyl caproate  (4)

Elution of the column with chloroform-methanol (19 : 1) afforded pale yellow crystals of 4, purified from chloroform-methanol (1:1), 258 mg,  m. p. 116 - 117 °C,  UV λmax (MeOH): 210 nm (log ε 3.6); IR λmax (KBr): 3510, 3405, 3365, 2922, 2853, 1730, 1629, 1522, 1458, 1375, 1272,  1170, 1097, 985, 769 cm-1; 1H NMR (CDCl3): δ 5.36 (1H, m, H-9), 5.32 (1H, m, H-10), 2.34 (2H, t, J = 7.6 Hz, H2-2), 2.05 (2H, m, H2-8), 2.01 (2H, m, H2-11), 1.82 (2H, m, CH2), 1.55 (2H, m, H2-3), 1.29 (8H, m, 4 x CH2), 1.25 (4H, brs, 2 x CH2), 1.21 (8H, m, 4 x CH2),  0.86 (3H, t, J = 6.8 Hz, Me-18),  5.02 (1H, d, J = 6.4 Hz, H-1a), 4.34 (1H, dd, J = 6.4, 7.2 Hz, H-2a), 4.17 (1H, m, H-3a), 4.15 (1H, m, H-4a), 3.63 (2H, d, J = 9.3 Hz, H2-5a),  4.95 (1H, d, J = 6.7 Hz, H-1b), 4.63 (1H, dd, J = 6.7, 7.6 Hz, H-2b), 4.13 (1H, m, H-3b), 4.20 (1H, m, H-4 b), 3.80 (2H, d, J = 9.1 Hz, H2-5b), 7.50 (1H, d, J = 1.2 Hz, H-2ʹ), 6.73 (1H, d, J = 8.5 Hz, H-5ʹ), 6.83 (1H, dd, J = 1.2, 8.5 Hz, H-6ʹ), 3.67 (3H, br s, OMe), 2.29 (2H, t, J = 7.2 Hz, H2-2′′), 1.53 (2H, m, H2-3′′), 1.27 (2H, m, H24′′), 1.18 (2H, m, H2-5′′), 0.84 (3H, t, J = 6.3 Hz, Me-6′′);   13C NMR (CDCl3): δ 173.89 (C-1), 52.01 (C-2), 37.19 (C-3), 33.83 (C-4), 31.93 (C-5), 29.70 (C-6), 29.46 (C-7),  48.03 (C-8), 129.51 (C-9), 124.83 (C-10), 47.16 (C-11), 29.37 (C-12), 29.27  (C-13), 29.21 (C-14), 29.16 (C-15), 27.21 (C-16), 22.70 (C-17), 14.98 (C-18),101.07 (C-1a),  74.51 (C-2a), 71.90 (C-3a), 64.71 (C-4a), 61.83 (C-5a), 97.21 (C-1b), 79.55 (C-2b), 71.90 (C-3b), 81.03 (C-4b), 60.29 (C-5b), 145.69 (C-1ʹ), 138.08 (C-2ʹ), 153.72 (C-3ʹ), 152.18 (C-4ʹ), 137.13 (C-5ʹ), 131.39 (C-6ʹ),  172.15 (C-7′), 56.01 (OMe),  169.22 (C-1ʹʹ), 55.08  (C-2ʹʹ), 37.16 (C-3ʹʹ), 29.37 (C-4ʹʹ), 29.27 (C-5ʹʹ), 14.13 (C-6ʹʹ); ESI MS m/z (rel. int.): 794 [M]+ (C42H66O14) (1.6), 627 (11.6),  397 (12.1), 281 (8.2), 230 (9.7), 167 (9.3).

2.5.2 Oleiyl-O- α-D-tetra-arabinosyl vanillyl  caproate (5) 

Elution of the column with chloroform - methanol (9 : 1) gave a pale yellow crystals of 5, recrystallized from chloroform-methanol (1:1), 307 mg, m. p. 125 - 127 °C,  UV λmax (MeOH): 213 nm (log ε 2.8); IR λmax (KBr): 3523, 3420, 3364, 2926, 2855, 1732, 1717,  1630, 1517, 1442, 1374, 1277,  1173, 1036, 862, 767 cm-1; 1H NMR (CDCl3): δ 5.35 (1H, m, H-9), 5.31 (1H, m, H-10), 2.30 (2H, t, J = 7.6 Hz, H2-2), 2.19  (2H, m, H2-8), 2.06 (2H, m, H2-11), 1.53 (2H, m, H2-3), 1.51 (2H, m, H2-7), 1.49 (2H, m, H2-12), 1.27 (4H, m, 2 x CH2), 1.25 (8H, brs, 4 x CH2),  0.86 (3H, t, J = 6.3 Hz, Me-18), 5.03 (1H, d, J = 3.6 Hz, H-1a), 4.20 (1H, dd, J = 3.6, 5.3 Hz, H-2a), 3.97 (1H, m, H-3a), 3.89 (1H, m, H-4a), 3.74 (2H, d, J = 8.2 Hz, H2-5a), 4.91 (1H, d, J = 4.4 Hz, H-1b), 4.17 (1H, dd, J = 4.4, 5.8  Hz, H-2b), 395 (1H, m, H-3b), 3.87  (1H, m, H-4 b), 3.72 (2H, d, J = 8.0 Hz, H2-5b), 4.89 (1H, d, J = 6.4 Hz, H-1c), 4.15 (1H, dd, J = 6.4, 6.8 Hz, H-2c), 3.94 (1H, m, H-3c), 3.86 (1H, m, H-4 c), 3.70 (2H, d, J = 7.8 Hz, H2-5c), 4.81 (1H, d, J = 4.8 Hz, H-1d), 4.22 (1H, dd, J = 4.8, 6.7 Hz, H-2d), 3.92 (1H, m, H-3d), 4.03 (1H, m, H-4d), 3.76 (2H, d, J = 10.4 Hz, H2-5d), 7.33 (1H, d, J = 1.2 Hz, H-2ʹ), 6.78 (1H, d, J = 7.5 Hz, H-5ʹ), 7.50 (1H, dd, J = 1.2, 7.5 Hz, H-6ʹ), 3.78 (3H, br s, OMe), 2.21 (2H, t, J = 7.2 Hz, H2-2′′), 1.49 (2H, m, H2-3′′), 1.23 (4H, m, H24′′, H2-5′′), 0.82 (3H, t, J = 6.1 Hz, Me-6′′);  13C NMR (CDCl3): δ  d 171.56 (C-1), 56.35 (C-2), 39.20 (C-3), 38.76 (C-4), 33.91 (C-5), 29.66 (C-6), 29.52 (C-7),  48.01 (C-8), 129.98 (C-9), 127.64 (C-10), 48.01 (C-11), 37.83 (C-12), 31.92  (C-13), 29.11 (C-14), 27.20 (C-15), 26.26 (C-16), 22.69 (C-17), 14.96 (C-18),108.79 (C-1a), 79.07  (C-2a), 74.75 (C-3a), 64.75 (C-4a), 60.19 (C-5a), 102.69 (C-1b), 79.03 (C-2b), 72.47 (C-3b), 69.58 (C-4b), 61.12 (C-5b), 101.15 (C-1c), 75.63  (C-2c), 72.40 (C-3c), 64.75 (C-4c), 61.09 (C-5c), 97.15 (C-1d), 86.89 (C-2d), 64.73 (C-3d), 84.50 (C-4d), 64.69 (C-5d), 147.19 (C-1ʹ), 130.25 (C-2ʹ), 153.75 (C-3ʹ), 152.51 (C-4ʹ), 127.64 (C-5ʹ), 114.52 (C-6ʹ), 170.44  (C-7′), 51.99  (OMe), 170.42 (C-1ʹʹ), 55.92  (C-2ʹʹ), 37.15 (C-3ʹʹ), 34.39 (C-4ʹʹ), 29.69 (C-5ʹʹ), 14.87 (C-6ʹʹ); ESI MS m/z (rel. int.): 1058 [M]+ (C52H82O22) (1.5), 529 (8.3), 397 (21.8), 281 (2.8), 230 (7.3), 167 (11.6), 99 (1.9).

2.6 Isolation of phytoconstituents from the roots of Verbesina encelioides 

2.6.1 Lignoceryl myristate (6)  

Elution of the column with petroleum ether – chloroform (1 : 1)  furnished a colourless mass of  6, yield 161  mg, recrystallized from chloroform-methanol (1:1), m. p. 63 - 65 °C; IR γmax (KBr) : 2919, 2851, 1739, 1641, 1464, 1374, 1167, 724 cm­­­­­­-1;   1H NMR (CDCl­3): δ  4.06 (2H, t, J = 7.1 Hz, H2 -1′), 2.27 (2H, t, J = 7.2  Hz, H2 -2), 2.03 (2H, m, CH2-3),  1.53 (2H, m, CH2-2′), 1.29 (6H, brs, 3 x  CH2),    1.25 (56H, brs, 28 ´ CH2 ),  0.88 (3H, t,  J = 5.7 Hz, Me-14), 0.84 (3H, t,  J = 6.8 Hz, Me-24′); 13C NMR (CDCl3): d 172.98 (C-1),  68.41 (C-1′), 32.81  (CH2), 29.60 (30 x CH2), 27.69 (CH2),  25.24  (CH2),  22.62 (CH2), 14.19 (Me - 14), 14.16 (Me - 24′);  ESI  MS m/z (rel.int.): 564 [M]+ (C38H76O2) (13.1), 353 (63.9), 337 (8.5), 308  (8.2), 227 (7.6), 211 (28.7).

2.6.2 β-Amyrin palmitate  (7) 

Elution of the column with petroleum ether – chloroform (1 : 3) gave colourless crystalline powder of  7, recrystallized from chloroform – methanol (1 : 1), yield  189  mg,  m. p.  76 - 77 °C; [α]D25°  +54 (c = 1.3, benzene); UV lmax (MeOH): 209 nm (log ε 3.4);  IR γmax (KBr): 2919, 2851, 1729, 1635, 1635, 1468, 1380, 1361, 1265, 1198, 1174,  1096, 989, 720  cm-1. 1H NMR (CDCl3):  δ 5.18 (1H, t, J = 3.6 Hz,  H-12), 4.50 (1H, dd, J = 5.5, 8.8 Hz, H-3α),  2.30 (2H, t, J = 7.2  Hz,  H-2′), 1.86  to 1.29 (23H, m, 3 x CH, 10 x CH2), 1.27 (2H, m, H2-3′), 1.25 (6H, brs, 3 x CH2), 1.23 (4H, brs, 2 x CH2),  1.13 (4H, brs, 2 x CH2), 1.10 (10H, brs, 5 x CH2), 1.06 (3H, brs, Me-23),  0.97 (3H, brs, Me-29),  0.95 (3H, brs, Me-30), 0.91 (3H, brs,  Me-25),0.89 (3H, brs, Me-27),  0.87 (3H, brs, Me-24), 0.85 (3H, brs, Me-28), 0.83 (3H, t,  J = 6.1 Hz, Me-16′), 0.80 (3H, brs, Me-26); 13C NMR (CDCl3): δ 38.30 (C-1), 23.58 (C-2), 80.63 (C-3), 37.82 (C-4),  55.30 (C-5), 18.21 (C-6), 34.96 (C-7), 41.76 (C-8), 48.70 (C-9), 36.90 (C-10),  23.61 (C-11), 121.71 (C-12), 145.29 (C-13), 39.86 (C-14), 26.20 (C-15), 26.98 (C-16), 32.02 (C-17), 47.60 (C-18), 47.26  (C-19), 31.17 (C-20),  32.64 (C-21),  34.79 (C-22), 28.49 (C-23), 16.13 (C-24), 17.15 (C-25), 23.68 (C-26), 23.77 (C-27),  28.13 (C-28), 33.43 (C-29), 26.05  (C-30), 173.81 (C-1′), 46.84 (C-2′), 37.21 (C-3′), 32.57 (C-4′), 29.78 (C-5′, C-6′),  29.67 (C-7′), 29.56 (C-8′), 29.47 (C-9′), 29.36 (C-10′), 29.27 (C-11′), 29.25 (C-12′), 29.16 (C-13′), 29.12 (C-14′), 22.63  (C-15′), 14.65 (C-16′);  ESI  MSm/z (rel.int.): 664 [M]+ (C46H80O2) (1.8), 425 (8.3),  393 (6.8), 256 (11.7), 218 (12.3), 206 (5.8), 175 (39.7), 159 (15.6).

2.6.3 β-Amyrin oleate  (8) 

Further elution of the column with petroleum ether- chloroform (1 : 3) produced colourless crystals of  8, recrystallized from chloroform - methanol (1 : 1), yield  138  mg,  m. p.  178 - 180 °C; UV lmax (MeOH): 213 nm (log ε 3.1);  IR γmax (KBr):  2943, 2850, 1735, 1645, 1457, 1374,   1246, 1025, 979, 873, 725  cm-11H NMR (CDCl3):  δ 5.27 (2 H, m, H-9′, H-10′), 5.18  (1H, t, J = 3.8 Hz,  H-12), 4.48 (1H, dd, J = 3.6, 8.4 Hz, H-3α),  2.27  (2H, t, J = 7.1  Hz,  H2-2′), 2.05  to 1.32 (35 H, m, 3 x CH, 16 x CH2), 1.28 (8H, m, 4 x CH2), 1.25 (4H, brs, 2 x CH2), 1.20 (4H, brs, 2 x CH2),  1.15 (4H, brs, 2 x CH2), 1.12 (3H, brs, Me-23),  1.06 (3H, brs, Me-25),  0.97 (3H, brs, Me-29), 0.95 (3H, brs,  Me-30),0.93 (3H, brs, Me-27),  0.90 (3H, brs, Me-26), 0.87 (3H, brs, Me-28), 0.85 (3H, t,  J = 6.1 Hz, Me-18′), 0.82 (3H, brs, Me-24); 13C NMR (CDCl3): δ 38.49 (C-1), 24.89 (C-2), 81.04 (C-3), 38.30 (C-4),  55.43 (C-5), 18.24 (C-6), 34.78 (C-7), 41.75 (C-8), 48.68 (C-9), 36.89 (C-10),  22.63 (C-11),   121.69 (C-12), 145.19 (C-13), 39.85 (C-14), 26.96 (C-15), 27.08 (C-16), 32.06 (C-17), 47.26  (C-18), 47.61  (C-19), 31.16 (C-20),  32.62 (C-21),  34.44 (C-22), 28.47 (C-23), 15.64 (C-24), 16.85 (C-25), 23.59  (C-26), 23.77 (C-27),  28.01 (C-28), 32.56 (C-29), 26.02  (C-30), 171.15 (C-1′), 46.82 (C-2′), 37.75 (C-3′), 32.56 (C-4′), 29.23  (C-5′, C-6′),  29.66 (C-7′), 36.74 (C-8′), 118.94  (C-9′), 109.07  (C-10′), 36.72 (C-11′), 26.73 (C-12′), 29.96 (C-13′), 27.61 (C-14′), 26.06  (C-15′), 25.23 (C-16′), 22.68 (C-17′), 14.77  (C-18′); ESI MSm/z(rel.int.): 690 [M]+ (C48H82O2) (1.4), 265 (1.3),  218 (12.4), 207 (9.8), 203 (11.2), 189  (5.2), 174 (21.7).

2.6.4 β-Amyrin stearate (9) 

Elution of the column with petroleum ether - chloroform (1 : 3)   afforded  colourless crystalline powder of  9, recrystallized from chloroform - methanol (1 : 1), yield  218  mg,  m. p.  56 - 58 °C; UV lmax (MeOH): 212 nm (log ε 5.1);  IR γmax (KBr): 2914, 2848, 1728, 1635, 1469, 1270, 1208, 1173, 1112,  1036, 889, 719  cm-11H NMR (CDCl3): δ 5.18 (1H, t, J = 3.6 Hz,  H-12), 4.50 (1H, dd, J = 5.5, 8.8 Hz, H-3α),  2.30 (2H, t, J = 7.2  Hz,  H-2′), 1.86  to 1.29 (23H, m, 3 x CH, 10 x CH2), 1.27 (2H, m, H2-3′), 1.25 (6H, brs, 3 x CH2), 1.23 (4H, brs, 2 x CH2),  1.13 (4H, brs, 2 x CH2), 1.10 (10H, brs, 5 x CH2), 1.01  (3H, brs, Me-23),  0.97 (3H, brs, Me-29),  0.95 (3H, brs, Me-30), 0.91 (3H, brs,  Me-25), 0.89 (3H, brs, Me-27),  0.87 (3H, brs, Me-24), 0.85 (3H, brs, Me-28), 0.83 (3H, t,  J = 6.1 Hz, Me-16′), 0.80 (3H, brs, Me-26); 13C NMR (CDCl3): δ 38.32 (C-1), 23.54 (C-2), 80.65 (C-3), 37.83 (C-4),  55.32 (C-5), 18.34  (C-6), 34.94  (C-7), 41.78 (C-8), 47.62  (C-9), 36.92 (C-10),  23.64 (C-11),   121.72 (C-12), 145.28 (C-13), 39.88 (C-14), 26.21 (C-15), 27.01 (C-16), 32.05 (C-17), 47.30 (C-18), 47.31  (C-19), 31.15 (C-20),  32.66 (C-21),  34.81 (C-22), 28.47 (C-23), 15.63 (C-24), 16.86 (C-25), 23.69 (C-26), 23.79 (C-27),  28.15 (C-28), 33.41 (C-29), 26.03  (C-30), 173.76 (C-1′), 46.86 (C-2′), 37.23 (C-3′), 32.59 (C-4′), 29.76 (C-5′, C-6′, C-7′),  29.68 (C-8′, C-9′, C-10′), 29.57 (C-11′), 29.47 (C-12′), 29.34 (C-13′), 29.26 (C-14′), 25.24 (C-15′, C-16′), 22.78  (C-17′),  14.21  (C-18′);  ESI MSm/z (rel.int.): 692 [M]+ (C48H84O2) (1.3), 425 (6.2),  284 (12.1),  218 (5.2), 207 (3.5). 

3  Results  and  Discussion

Compound  1  showed  IR  absorption bands for carbonyl group (1710 cm-1) and long aliphatic chain (726 cm-1). Its mass spectrum displayed a molecular ion peak at m/z 478 corresponding to a molecular formula of an aliphatic ketone, C33H66O.  The ion peaks generating at m/z 351 [C9 – C10 fission,   CH3 (CH2)22CO] +, 127 [M – 351]+, 323  [C10 – C11 fission,   CH3 (CH2)22] + and 153 [M – 323]+  suggested the presence of the carbonyl function at C10 carbon. The 1H NMR spectrum of  1 exhibited five two-proton multiplets  from δ 2.53 to 1.33 and  two broad singlets at δ 1.27 (6H) and 1.25 (44 H) assigned to methylene protons. Two three-proton triplets at δ 0.87 (J = 6.1 Hz) and 0.83 (J = 6.3 Hz) were accounted to terminal C-1 and C-33   primary methyl protons, respectively.  The 13C NMR spectrum of 1 displayed signals for the carbonyl carbon at δ 193.65 (C-10), methylene carbons between δ 31.19 - 22.67   and methyl carbons at δ 19.16 (C-1) and 13.55 (C-33).  The absence of any signal beyond δ 2.53 in the 1H NMR spectrum and between δ 193.65 - 31.19 in the 13C NMR   spectrum ruled out the unsaturated nature of the molecule. On the basis of foregoing spectral data analysis, the structure of 1 has been elucidated as n-tritriacontan-10-one,  a  new aliphatic   ketone  (Fig. 1).  

Compound 2, named 30-lauryloxy-α-amyrin 3-butyrate,   responded to Liebermann-Burchardt test positively for triterpenoids and exhibited characteristic IR absorption bands for ester  group (1732  cm-1), unsaturation  (1641   cm-1) and aliphatic chain (757  cm-1). On the basis of mass and 13C NMR spectra the molecular ion peak of 2 was established   at m/z 456 consistent with a molecular formula of pentacyclic triterpenic ester, C46H78O4.   The mass spectrum showed important ion fragments at m/z623 [M – 71, OC(CH2)2CH3]+, 511 [M – 183, OC(CH2)10-CH3]+, and 199 [OOC(CH2)10-CH3]+ indicating that  butyrate and laurate groups were linked to the triterpenic unit. The ion peaks arising  at  m/z  278 and 416  generated due to retro-Diels Alder fragmentation, 207 [278 - OC(CH2)2CH3]+ and  191 [278 - OOC(CH2)2CH3]+,  suggested  ∆12 olefinic linkage in ring  C40, butyrate function in the ring A/B placed at C-3 on the basis of biogenetic consideration and laurate  group in the ring D/E.  The 1H NMR spectrum of  2 displayed a one-proton downfield doublet at d5.34 (J = 5.1 Hz)  assigned to vinylic  H-12 proton, a one-proton double  doublet at d 4.06 (J = 4.7, 7.5 Hz) ascribed  to  oxymethine  H-3α  proton, a  two – proton doublet at δ 4.15 (J = 7.2 Hz) attributed to oxymethylene  H2-30,   methylene and methine  protons in the range from 2.33 to 1.20, six three-proton singlets at d1.07,  0.98,  0.95, 0.90,  0.88  and  0.86  associated with tertiary C-23, C-25, C-27, C-24,C-28 and C-26 methyl protons, respectively, a three-proton doublet at δ 0.93 (J = 6.2 Hz) accounted to secondary C-29 methyl protons of ursene- type triterpene, and two three-protons triplets at δ 0.83 (J = 6.1 Hz) and  0.79 (J = 6.2 Hz) allocated  correspondingly  to primary C-4′ and C-12′′ methyl protons.  The presence of  two doublets  at δ 0.93 (3H, Me-29) and  4.15 (2H, CH2O-30) supported the existence  of one oxymethylene function in ring E. The 13C NMR spectrum of 2 exhibited  signals for forty six carbons including  ester carbons  at d 174.03 (C-1ʹ) and  171.12 (C-1ʹʹ),   vinylic carbons at d  124.40 (C-12) and 139.86 (C-13),  oxymethine  carbon at d 81.04 (C-3), oxymethylene carbon at δ 64.31 (C-30)  and  methyl carbons resonated from d  28.36 to 14.21. The absence of   the C-30 carbon signal near δ 21.0 indicated the location of the lauryl group at C-30.  The assignments of the 1H NMR and carbon chemical shifts of 2 were compared with d values of the corresponding positions   of urs-12-enes40,41. On the basis of above discussion and literature values the structure of 2 was elucidated as  30-lauryloxy- urs-12-en-3β-olyl butyrate, a new α-amyrin diester  (Fig. 1). 

Compound  3, designated as  3-palmityl α-amyrin-23,6α-olide,  692 [M]+ at m/z 692  (C46H76O4),  showed distinctive IR absorption  bands for lactone ring (1736  cm-1), unsaturation  (1640   cm-1) and aliphatic chain (758  cm-1). Its  mass spectrum displayed important ion fragments at m/z239  [CH3-(CH2)14-CO]+, 453  [M – 239]+, 256 [CH3-(CH2)14-COOH]+ and 436 [M – 256]+ indicating that  palmitic acid was esterified with the triterpenic unit. The ion peaks generating  at  m/z  473  and 218  due to retro-Diels Alder fragmentation and 234 [473 - 239]+  suggested the existence of  ∆12 olefinic linkage in ring  C40  and  palmitate unit  in the ring A/B placed at C-3 on the basis of biogenetic analogy and saturated nature of the rings D and  E.  The 1H NMR spectrum of 3 displayed a one-proton downfield triplet at d5.12 (J = 3.6 Hz)  assigned to vinylic  H-12 proton, a one-proton triple  doublet  at d 4.51 (J = 4.6, 4.8, 5.7 Hz) and a  one - proton double doublet at δ 4.13 (J = 5.3, 8.3  Hz) attributed to α-oriented oxymethine   H-6 and H-3  protons, respectively, a two-proton triplet at  δ 2.30 (J = 7.6 Hz) ascribed to methylene H2-2′ protons adjacent to the ester function, other methylene protons from δ 2.26 to 1.23, five three-proton singlets at δ 1.13,  1.06,  1.01, 0.97 and 0.91  associated  correspondingly with the tertiary C-25, C-24, C-26, C-28 and C-27 methyl protons, two three - protons doublets at δ   0.87 (J = 6.1 Hz) and  0.84 (J = 6.0 Hz) allocated  to secondary C-29 and C-30 methyl protons, respectively,  and a  three - protons triplet at δ 0.79 (J = 6.6 Hz) due to primary C-16′ protons.  The 13C NMR spectrum of  3 exhibited  signals for forty six carbons including   ester  carbon  at d 170.11 (C-1ʹ), lactone carbon at δ  169.96 (C-23),  vinylic carbons at d 123.66 (C-12) and 138.88 (C-13),   oxymethine  carbons at d 80.07 (C-3) and 80.05 (C-6)  and  methyl carbons from d  22.70 to 13.64. The assignments of the 1H NMR and carbon chemical shifts of 3 were compared with d values of the corresponding positions   of urs-12-ene-type triterpenoids40,41. On the basis of these evidences   the structure of 3 was elucidated as urs-12-en-23,6α-olide 3β-olyl palmitate, a new α-amyrin lactonic ester  (Fig. 1).

Compound 4, named oleiyl-O- α-D-dixylosyl vanillyl caproate, gave positive tests for glycosides and showed IR absorption bands for hydroxyl groups (3510, 3405, 3365 cm-1), ester function (1730 cm-1) and unsaturation (1629  cm-1). On the basis of mass and 13C NMR spectral data, the molecular ion peak of 4  was established at m/z 794 consistent with a molecular formula of an acyl diglycosidic ester, C42H66O14. An ion peak generating at m/z 281 [O - C1 fission, C18H33O2]+ suggested that oleic acid was esterified with a diglycosidic ester unit. The ion fragments arising at m/z 397  [ C2a – O fission,   C5H7O4-(C6H3-(OH)(OMe)-CO-(CH3-(CH2)4-CO)]+,  167 [C2b -O fission, C6H3-(OH) (OMe)- CO]+   and  230 [397 - 167]+  indicated the attachment of vanillyl and hexanoyl   units with the second sugar moiety. The 1H NMR spectrum of 4 exhibited two one - proton multiplets at δ 5.36  and 5.32   assigned   to  vinylic H-9 and H-10 protons, respectively, methylene protons between δ 2.34 - 1.18 and two three - proton triplets at δ 0.86 (J = 6.8 Hz) and 0.84 (J = 6.3 Hz) ascribed to terminal C-18  and C-6′′ primary methyl protons.  Two one – proton doublets at δ 5.02 (J = 6.4 Hz) and   4.95 (J = 6.7 Hz) were ascribed correspondingly to α-oriented anomeric H-1a and H-1b protons.  The other sugar protons resonated as one - proton double doublets at δ 4.34 (J = 6.4, 7.2 Hz, H-2a) and 4.63 (J = 6.7, 7.6 Hz, H-2b), as one - proton multiplets     from δ 4.20  to 4.13 and as two - proton doublets at δ 3.63 (J = 9.3 Hz, H2-5a) and 3.80 (J = 9.1 Hz, H2-5b). Two one - proton doublets at δ 7.50 (J = 1.2 Hz) and 6.73 (J = 8.5 Hz), a one - proton double doublet at δ 6.83 (J = 1.2, 8.5 Hz) and a three - proton singlet at δ 3.67  were accounted to aromatic meta-coupled H-2′, ortho-coupled H-5′, meta, ortho-coupled H-6′ and methoxy protons, respectively. The 13C  NMR spectrum of 4 displayed signals for ester carbons at δ 173.89 (C-1), 172.15 (C-7′)  and 169.22 (C-1ʹʹ), aromatic and vinylic carbons between δ 153.72 - 124.83, anomeric carbons at δ 101.07 (C-1a) and 97.21 (C-1b), remaining sugar carbons from δ 81.03 to 60.29, methylene carbons in the range of δ 52.01 - 22.70, methoxy carbon at δ  56.01 and terminal methyl carbons at δ 14.98 (C-18) and 14.13 (C-6ʹʹ). The presence of H-2a in a deshielded region as a one-proton double doublet at δ 4.34 in the 1H NMR spectrum and C-2a carbon signal at δ 74.51 suggested attachment of the second sugar unit at C-2a. The existence of H-2b and H-4b at δ 4.63 and 4.20 in further  downfield field indicated the attachment of vanyllic group at C-2b and hexanoyl function at C-4b.  Acid hydrolysis of 4  yielded  oleic acid, Rf 0.34  (glacial acetic acid, 85%),  vanillic acid, m. p. 210 – 212 °C, Rf  0.56 (benzene - acetic acid – water, 37:45:18, v/v);  D-xylose, Rf   0.81  (n-butonal – pyridine – water, 6 : 4 : 3, v/v), m. p. 153 - 156 °C,   [α]D20 + 91 ° (water, 10%)    and caproic acid (hexanoic acid), Rf 0.82 (methanol-acetic acid-tetralin, 10: 2: 1, v/v). On the basis of above discussion, the compound 4 was structurally elucidated as oleiyl-O-α-D-xylopyranosyl-(2a→1b)-O-α-D-xylopyranosyl-2b-vanillyl-4b-caproate, a new acyl dixyloxyl diester  (Fig. 2). 

Compound 5, designated as oleiyl-O- α-D-tetra-arabinosyl vanillyl caproate, [M]+ at m/z 1058  (C52H82O22), was a tetra-arabinosyl α- homologue of 5. It showed IR absorption bands for hydroxyl groups (3523, 3420, 3364 cm-1), ester functions (1732, 1717 cm-1), unsaturation (1630 cm-1), aromacity (1517, 1036 cm-1) and long aliphatic chain (767 cm-1). The ion peaks produced at m/z 281 [O - C1 fission, C18H33O2]+ and  529 [C2b- O fission, C18(CH2)7-CH=CH-(CH2)7-CO-C5H8O4- C5H8O4]+ indicated that oleiyl was linked to the sugar chain. The ion fragments arising at m/z 397  [ C2a – O fission,   C5H7O4-(C6H3-(OH)(OMe)-CO-(CH3-(CH2)4-CO)]+,  167 [C2b O fission, C6H3-(OH) (OMe)- CO]+   and  230 [397 - 167]+  indicated the attachment of vanillyl and hexanoyl   units with the second sugar moiety. The ion peaks generated at m/z 397 [C2c – O fission,C5H7O4-(C6H3-(OH)(OMe)-CO-(CH3-(CH2)4-CO)]+, 167 [C2d –O fission, C6H3-(OH)(OMe)-COO]+ and 230 [397 – 167]+ supported the existence of vanillyl and caproyl groups attached to the last sugar unit.  Its 1H NMR spectrum displayed two one-proton multiplets at δ 5.35  and  5.31 assigned to vinylic H-9 and H-10 protons, respectively,  four one proton doublets at δ   5.03 (J = 3.6 Hz), 4.91 ( J = 4.4 Hz), 4.89 (J = 6.4 Hz) and 4.81 (J = 4.8 Hz) ascribed correspondingly   to  α-oriented anomeric H-1a, H-1b, H-1c and  H-1d protons, other sugar protons between δ 4.22 - 3.70, two one - proton doublets at δ 7.33 (J = 1.2 Hz), 6.78 (J = 7.5 Hz) and a one – proton double doublet at δ 7.50 ( J = 1.2, 7.5 Hz) due to aromatic H-2ʹ, H-5ʹ and H-6ʹ protons, respectively, a three – proton singlet at δ  3.78  accounted to methoxy protons, two three – proton triplets at  δ  0.86 (J = 6.3 Hz) and 0.82 ( J = 6.1 Hz) associated with the primary C-18 and C-6′′   primary methyl protons and the methylene protons in the range of  δ 2.30 – 1.23.  The 13C NMR spectrum of 5 exhibited signals for ester carbons at δ 171.56 (C-1), 170.44 (C-7′)  and 170.42 (C-1ʹʹ), aromatic and vinylic carbons from  δ 153.75 to 114.52, anomeric carbons in the range of  δ 108.79 - 97.15, other  sugar carbons between δ 86.89 -  61.09, methylene carbons  from δ 56.35 - 22.65, methoxy carbon at δ  51.99 and terminal methyl carbons at δ 14.96 (C-18)   and 14.87 (C-6ʹʹ). The presence of proton  H-2a, H-2b and H-2c  signals  in the   deshielded region as a one-proton double doublets from  δ  4.20 to 4.15  and their respective  carbon   signals at δ  79.07  (C-2a), 79.03 (C-2b) and  75.63  (C-2c) suggested attachment of the sugar units through (2a→1b), (2b→1c) and (2c→1d), respectively. The existence of H-2d as a one – proton  double doublet at δ  4.22 (J = 4.8, 6.7 Hz) and H-4d as a multiplet at  δ 4.03 (1H) in further  downfield field region  indicated the attachment of vanillic group at C-2b and caproyl  function at C-4b.  Acid hydrolysis of 5 yielded  oleic,  vanillic and caproic acids (co-TLC comparable) and D-arabinose, Rf   0.77  (n-butonal - pyridine - water, 6 : 4 : 3), m. p. 162 – 164 °C,   [α]D20 - 103 ° (water, 4%).     On the basis of above discussion, the compound 5 was structurally elucidated as oleiyl-O-α-D-arabinopyranosyl-(2a→1b)-O-α-D-arabinopyranosyl--(2b→1c)-O-α-D-arabinopyranosyl--(2c→1d)-O-α-D-arabinopyranosyl-2d-vanillyl-4d-caproate, a new acyl tetra-arabinosyl  diester   (Fig. 2).

Compound 6, named lignoceryl myristate, showed IR absorption bands for ester group (1739  cm-1)  and long aliphatic chain (724 cm-1). Its mass spectrum exhibited a molecular ion peak at m/z 564  consistent with the molecular formula of a fatty acid ester, C38H76O2. The generation of the ion peaks at m/z 211 [C1 - O fission, CH3(CH2)12-CO]+, 353 [M - 211, O-(CH2)23-CH3]+, 227 [C1′ - O fission, CH3(CH2)12-COO]+ and 337 [M - 227, O-(CH2)23-CH3]+  indicated that a C24  lignoceryl  alcohol was esterified with myristic  acid. The 1H NMR spectrum of 6 displayed two  triplets at δ 4.06 (J = 7.1 Hz) and  2.27 (J = 7.2  Hz) integrating for two protons each   assigned to oxymethylene H2-1′ and methylene H2 -2 protons adjacent to the ester function, respectively. The remaining methylene protons appeared as two – proton multiplets   at δ  2.03  and 1.53 and  as broad singlets at δ  1.29 (6H) and 1.25 (56H).  Two three-proton triplets at δ 0.88 (J = 5.7 Hz) and 0.84 (J = 6.8 Hz) were due to correspondingly C-14 and C-24ʹ primary methyl protons. The 13C NMR spectrum of 6 showed signals for ester carbon at δ 172.98 (C-1),  oxymethylene carbon at δ  68.41 (C-1′), other methylene carbons between δ 32.81 - 22.62 and methyl carbons at δ 14.19 (C-14) and 14.16 (C-24′). The absence of  any 1H NMR signal beyond  δ  4.06 and carbon signal between δ 172.98 - 68.41 supported the saturated nature of the molecule. On the basis of the foregoing account, the structure of 6 has been formulated a  tetracosan-1-oyl   1-tetradecanoate (Fig.3).

Compound 7 was a known triterpenic ester identified as  β-amyrin palmitate42,43   (Fig 3).

Compound  8, named β-amyrin oleate ,     gave positive tests for triterpenoids  and  showed characteristic IR  absorption bands for ester function (1735  cm-1), unsaturation (1645 cm-1) and long aliphatic chain (725 cm-1). Its molecular ion peak was determined on the basis of mass and 13C NMR spectra at m/z 690 consistent with  a molecular formula of  a triterpenic ester  C48H82O2.  The ion peaks arising at m/z 207 and 218 due to Retro-Diels Alder fragmentation of the triterpenic unit after removal of the acyl group   suggested that a vinylic linkage was present at C12 carbon in ring C40.  The ion peaks produced at m/z 189 [207 - H2O]+, 174 [189 - Me]+ and 203 [218 - Me]+ indicated that a hydroxyl group was present in ring A which was placed at C-3 on the basis of biogenetic consideration.  The 1H NMR spectrum of  8  exhibited a  two - proton multiplet  at δ 5.27 and a one-proton triplet at  δ   5.18 (J = 3.8 Hz)  assigned to vinylic H-9′ and H-10′ and  H-12  protons, respectively,  a one - proton double doublet at δ  4.48 (J = 3.6, 8.4 Hz)  ascribed to  oxymethine  H-1α  proton,  a two - proton triplet at δ 2.27  (J = 7.1  Hz) attributed to methylene  H2-2′ protons adjacent to the ester group, other methine and methylene proton signals between δ 2.05 - 1.15, a three- proton triplet at  δ  0.85 (J = 6.1 Hz) due to  primary C-18′ methyl protons and eight three-protons singlets from δ 1.12 to 0.82 accounted to tertiary methyl protons, all attached to saturated carbons in an oleanene  - type triterpenic framework. The  13C NMR  spectrum of  8  displayed signals for ester carbon at δ 171.15 (C-1′), vinylic carbons at  δ 121.69 (C-12), 145.19 (C-13),  118.94  (C-9′) and  109.07  (C-10′), oxymethine  carbon at δ 81.04 (C-3), methyl carbons from δ 28.47 to 14.77 and methine and methylene carbon  between δ 55.43 – 22.68. The 1H and 13C NMR spectral data of the isolated compounds were compared with the oleanene-type triterpenoids44,45 . On the basis of spectral data analysis, the structure of 8   had been formulated as urs-12-en-3β-olyl oleate. This is a new triterpenic ester (Fig. 3). 

Compound 9  was a known triterpenic ester identified as  β-amyrin stearate46,47(Fig 3).

4  Conclusion

Phytochemical investigation of the aerial roots of F.  benghalensis  afforded  n-tritriacontan-10-one (1), 30-lauryloxy-α-amyrin 3-butyrate (2) and  3-palmityl α-amyrin-23,6α-olide (3).

The leaves of N.  arbor-tristis furnished two vanillyl glycosidic disters characterized as  oleiyl-O- α-D-dixylosyl vanillyl caproate  (4) and  oleiyl-O- α-D-tetra-arabinosyl vanillyl  caproate (5). The roots of V. encelioides  afforded  lignoceryl   myristate ( 6), β-amyrin palmitate(7), β-amyrin oleate (8) and  β-amyrin stearate (9). This work has enhanced understanding about the phytoconstituents of these plants. These secondary metabolites can be used as analytical markers for quality control of the plants. Further research is recommended to screen bioactivities of the isolated phytoconstituents with a view for supplementing conventional drug development especially in developing countries.

5 Conflicts of Interests

The authors hereby declare that there are no conflicts of interests.

6 Author’s contributions

SS and SRM performed the experimental work.  MA and SRM analyzed the spectral data and compiled the manuscript.

7 Acknowledgements

The authors are thankful to the Heads, Central Instrumentation Facility, Jamia Hamdard, New Delhi, and Arbro Analytical Division, New Delhi for recording spectral data of the compounds.

8 References

  1. Anonymous. Flora of Pakistan.  Flora of Pakistan/Pakistan Plant Database (PPD). Tropicos  website St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. 2014.
  2. Kirtikar KR, Basu BD.  Indian medicinal plants. Eds. E Blatter, Caius JF, Lalit Maohan Basu, Uttaranchal.   2001; 1: 3191-3192.
  3. Anonymous. The Wealth of India, A Dictionary of Indian Medicinal Plants and Industrial Products. NISCAIR (CSIR), New Delhi. 2005; 4:  26.
  4. Ahmad S, Rao H , Akhtar  M,  Ahmad I, Hayat MM,  Iqbal Z, Nisar-ur-Rahman. Phytochemical composition and pharmacological prospectus of Ficus bengalensis Linn. (Moraceae)- A review. Journal of Medicinal Plants Research. 2011; 5(28): 6393-6400.
  5. Quattrocchi U. CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology. Boca Raton, Florida. 2012; 1732.
  6. Almahy HA,  Alhassan NI. Studies on the chemical constituents of the leaves of Ficus bengalensis  and their antimicrobial activity. Journal of Science and Technology.  2011; 12: 111-116.
  7. Ali M, Kamran JN, Javed A, Showkat RM. Three new esters from the stem bark of Ficus bengalensis Linn. Journal of Pharmacy Research.  2010;  3(2):  352-355.
  8. Naquvi KJ, Ali M, Ahamad J. Two new phytosterols from the stem bark of Ficus  bengalensis L. Journal of Saudi Chemical Society 2015; 19: 650-654.
  9. Kundap U, Jaiswal Y, Sarawade R, Williams L, Shaikh MF. Effect of Pelargonidin isolated  from Ficus benghalensis L. on phenotypic changes in zebrafish (Danio rerio) embryos. Saudi Pharmmacy  Journal. 2017; 25(2):  249–257.
  10. Biswajit S, Mausumi A, Bishnu PC. Multivalent II [β-d-Galp(1→4)-β-d-GlcpNAc] and Tα [β-d-Galp-(1→3)-α-d-GalpNAc] specific Moraceae family plant lectin from the seeds of Ficus bengalensis  fruits. Carbohydrate  Research.  2007;  342(8):  1034-1043.
  11. Hosamani KM, Pattanashettar RS. Occurrence of unusual fatty acids in  Ficus  benghalensis  seed oil. Industrial Crops and Products, 2003; 18:  139- 143.
  12. Jain SJ, Khan T. Phytoconstituents from aerial roots of Ficus  benghalensis Linn. Indo American Journal of Pharmaceutical Research. 2015; 5(10):  3261 – 3280.
  13. Riaz N, Naveed MA, Saleem M, Jabeen B, Ashraf M, Ejaz SA. Cholinesterase inhibitory constituents from Ficus bengalensis. Journal of Asian Natural Products Research 2012; 14(12):1149-1155.   
  14. Adebayo MA, Aboaba SA, Olanrewaju IE, Ajetunmobi EA, Ogunwande IA.  Constituent of essential oil from Ficus benghalensis L. European Journal of Medicinal Plants. 2015;  9(2):  1-6.
  15. Rani C, Chawla S, Mangl M, Mangal AK, Kajla S, Dhawan AK. Nyctanthes arbortristis Linn (Night Jasmine): A Scared Ornamental Plant with Immense Medicinal Potentials. Indian Journal of Traditional Knowledge. 2012; 11(3): 427-435.
  16. Anonymous, The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products, NISCAIR (CSIR), New Delhi.  1997; 8:  69-70.
  17. Srivastava V, Rathore A, Ali SM, Tandon JS, New benzoic esters of loganin and 6β-hydroxy loganin from Nyctanthes  arbortristis. Journal of  Natural Products, 1990; 53(2):  303–308.
  18. Stuppner H, Muller EP, Mathuram V, Kundu AB.  Iridoid glucosides from Nyctanthes arbortristis. Phytochemistry.  1993; 32(2):  375–378.
  19. Rahman MM,  Roy SR, Husain  M, Shahjahan  M. Chemical constituents of  essential oil of  petals and corolla  tubes of  Nyctanthes Arbor-Tristis  Linn flower. Journal of   Essential   Oil Bearing Plants. 2011; 14(6):  717 - 721.
  20. Biswas I, Ukil S, Mukherjee A. Determination of n-alkane constituents and their phenological variation in the epicuticular wax of mature leaves of  Nyctanthes  arbor-tristis L. Natural  Product Research.  2014; 28(5): 330-332.
  21. Gadgoli C, Shelke S. Crocetin from the tubular calyx of Nyctanthes arbor-tristis. Natural Product Research. 2010; 24 (17): 1610–1615.
  22. Tuntiwachwuttikul P, Rayani, K, Taylor WC. Chemical constituents from the flowers of Nyctanthes arbortristis. Science Asia. 2003; 29:  21–30.
  23. Khatune NA, Mossadik MA, Rahman MM, Khonkar P, Haque ME, Gray AI. A benzofuranone from the flowers of Nyctanthes  arbortristis and its antibacterial and cytotoxic activities. Pharmaceutical Science Journal.  2005; 41:  33–37.
  24. Siriwardena VS, Arambewela  LSR. Determination of volatile constituents of the essential oil and absolute of Nyctanthes  arbortristis L. flowers grown in the wet zone of  Sri Lanka. Journal of Tropical Forestry and Environment. 2014; 4(2):  57-63.
  25. Mathuram V, Patra A, Kundu AB. A Phenyl propanoid glycoside from Nyctanthes  arbor-tristis.  Journal of Industrial Chemical Society. 1997; 74:  653-655.
  26. Tandon JS, Srivastava V, Guru PY.  Iridoids: A new class of Leshmancidal agents from Nyctanthes   arbortristis. Journal of   Natrual Products.  1991; 54(4): 1102–1104.
  27. Feenstra R, Feenstra K, Clements RD.  Biology and Impact of invasive species.4.Verbesina   encelioides, Golden Crownbeard (Magnoliopsida: Asteraceae).   Pacific